Corn quality and agronomic issues relating to ethanol production

ICM Conference
Iowa State University
Ames, IA
December 3, 2009

Charles Hurburgh, Professor, Agricultural and Biosystems Engineering
Connie Hardy, Program Specialist, Extension Value Added Agriculture
Corn Quality

• Positive factors:
 – Increase or decrease ethanol yield or value but not negative in all uses.
 – Protein, oil, etc.

• Negative factors:
 – Decrease ethanol yield or value and negative in all uses.
 – Toxins, mold damage, etc.
Typical Ethanol Corn Specs

• Base US Grade #2 Yellow Corn
• Moisture limit: 17% (a few take 18%)
• Test Weight low limit: 54 lb/bu
• Damage limit: 10% max (discount from 5%)
• Broken Corn: 12% max

Source: Hardy et al 2006.
NIRS-Based Equation for Ethanol Yield

- Validation set pooled with initial data
 - 293 samples
 - SECV = 0.03 gal/bu
 - $R^2 = 0.74$
 - ISU protein, oil, and density calibrations

- Others have not been studied

<table>
<thead>
<tr>
<th>Component</th>
<th>Final Equation Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0</td>
<td>3.23</td>
</tr>
<tr>
<td>Protein</td>
<td>-0.062</td>
</tr>
<tr>
<td>Oil</td>
<td>-0.030</td>
</tr>
<tr>
<td>Density</td>
<td>0.104</td>
</tr>
</tbody>
</table>
Ethanol Yield Trends - Iowa

2005-2008

Ethanol Yield Increase

Protein decrease

* Indicates significant increase (p<0.05)

Ethanol yield mean over 4 years

* Indicates significant decrease (p<0.05)

Protein mean over 4 years
Planting Date – Elmore/Abendroth Study

- 3 northern Iowa locations
- Delayed Planting

- Protein
- Grain yield
- Starch
- Ethanol Yield
Planting Date - Grain Yield

- Converted to percent of maximum yield
- Normalized for location differences

Compiled percent maximum grain yield vs. planting date for 3 northern Iowa locations

\[y = -0.0002x^2 + 17.382x - 3439.15 \]

\[R^2 = 0.9241 \]
Planting Date – Ethanol Yield

Percent maximum ethanol yield vs. planting date for 3 Northern Iowa locations - 2008

\[y = -7E-06x^2 + 0.5397x - 10676 \]
\[R^2 = 0.6331 \]
Planting Date

<table>
<thead>
<tr>
<th>Location</th>
<th>Planting Date</th>
<th>Grain Yield Loss (bu/acre)</th>
<th>Ethanol Yield Loss (gal/bu)</th>
<th>Ethanol Amount Loss (gal/acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>North</td>
<td>6/1/2008</td>
<td>22.8</td>
<td>0.020</td>
<td>64.1</td>
</tr>
<tr>
<td>North West</td>
<td>5/28/2008</td>
<td>25.1</td>
<td>0.034</td>
<td>80.5</td>
</tr>
<tr>
<td>North East</td>
<td>6/11/2008</td>
<td>61.6</td>
<td>0.049</td>
<td>173.8</td>
</tr>
<tr>
<td>Average Loss</td>
<td>Latest</td>
<td>36.5</td>
<td>0.034</td>
<td>106.1</td>
</tr>
</tbody>
</table>

Average loss at latest planting date 106.1 gal/acre
- 6.3 gal/acre loss due to reduced ethanol yield per bushel
 - Average grain yield (186.3 bu/acre) * average ethanol yield loss (0.034 gal/bu)
- 99.7 gal/acre loss due to decreased grain yields

Loss in corn quality not as important as grain yield loss

Ethanol plants would experience loss in quality more directly
Economic Loss

- **$0.05 loss per bushel**
- **100 million gallon per year ethanol plant**
 - 2.8 gal/bu
 - 35,714,286 bushels/year
 - **$1.79 million** loss in ethanol production due to corn quality
 - Plus cost to acquire additional grain
 - **Note:** **$2.77 million** 12/2009

<table>
<thead>
<tr>
<th>Planting Date</th>
<th>$/bu loss of ethanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>0.01</td>
</tr>
<tr>
<td>3</td>
<td>0.01</td>
</tr>
<tr>
<td>4</td>
<td>0.02</td>
</tr>
<tr>
<td>5</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Ethanol Price March 2009 = $1.42/gal

Iowa State University Extension model ‘Ethanol Profitability’, 2009
Hail damage, Sac County, 8-09-2009

Photos courtesy: Mark Licht, ISU Extension
Ear rot assessments – percent severity; rot present

- Cladosporium
- Gibberella
- Fusarium
- Penecillium
- Trichoderma
DON and ZEN present in hail samples

Vomitoxin (DON) and Zearalenone (ZEN), Hail Study Corn 2009

\[y = 0.1745x + 0.0408 \]

\[R^2 = 0.5437 \]
Test Weight did not predict DON well

$$y = -0.2636x + 15.701$$

$$R^2 = 0.1257$$
Low Test Weight is not low protein

Test Weight and Protein, Hail Study Corn 2009

\[y = -0.0874x + 12.158 \]

\[R^2 = 0.1375 \]
Agronomic Decisions affect Users

- Maturity choices – moisture, field mold
- Fungicide? – Stay green, reduce field mold???
- Hybrid matched to use (Feed or Ethanol?)
- Others?

- Supply chain agronomics
Summary

- Grain-based biofuel volume is still rising
- Grain revenues encourage productivity; higher input costs encourage efficiency
- Feed-food uses of corn are not falling
- New processing technologies will distribute grain components more efficiently and reduce process inputs.
- System/supply chain agronomics to optimize decisions to end use.