Leave No Dairy Calf Behind
Educational Series

Leo Timms, *ISU Professor of Animal Science & State Extension Specialist*
Dan Huyser, *ISU Extension & Outreach Ag Engineer*
Rebecca Brotzman, DVM, *Associate Outreach Specialist, University of Wisconsin*
Why calves?

• Having healthy dairy replacements is critical to a farm’s overall profitability and sustainability

• 2012 Iowa Dairy Survey indicated that 40% of Iowa dairy farms will be making changes to calf facilities in the next 5 years
RME Grant Goals

– Assist producers in evaluating their current practices and potentially new calf housing and feeding systems
– Enhance management skills to operate these systems successfully
• Questions? Type into chat box

• Type Name/Email address into chat box

• Webinar/Resource Materials:
 – http://www.extension.iastate.edu/dairyteam/calves-heifers
Calf Raising Facilities

Dan Huysker
Field Specialist – Ag Engineering
515-298-1731
dehuyser@iastate.edu
Key Components of Calf Housing

- Adequate space
- Good air quality
- Dry and clean bedding area
- Easy access to feed and water
- Caretaker convenience and comfort
The Gold Standard
The Gold Standard’s Drawbacks
The Gold Standard’s Drawbacks
Calf hutch Costs

Commercial Calf Hutches: $269 and up
Home Built Hutches: $100 and up
Indoor Alternative

Advantages:
- Protection from adverse weather
- Feed and supplies close
- More efficient use of space

Disadvantages:
- Harder to correctly ventilate
- Harder to idle facilities
The Ideal Calf Buildings

- **Individual Pens**
 - Solid panels between calves with open fronts and mesh 2 feet and above in back
 - 34 Square feet or more bedded area per calf
 - Deeply bedded pen in cooler temperatures
 - Drainage below the bedding
 - Natural ventilation with positive pressure tube
 - Sized to handle 25% more calves than calving rate
Indoor Housing

- Group Housing
 - 34 Square feet or more bedded area per calf
 - Deeply bedded pen in cooler temperatures
 - Drainage below the bedding
 - Positive pressure tube for minimum ventilation
 - Good Drainage around water tanks and calf feeders
Automatic Calf Feeder Barns

- Group pens
- Feeder room
 - Water
 - Drain
 - Electricity
 - Heat
 - Easy access
Ventilation

- Fresh air is needed to remove gases, moisture, heat, and reduce airborne bacteria counts

- Three ways
 - Mechanically
 - Naturally
 - Combination of natural and mechanical
Figure 3. Mechanically ventilated drive through calf barn with four rows of individual pens.
Other Considerations

- Utility/Mixing/Washing Room
- Drains for washing down
- Cleaning access
- Feed/Supply Storage
- Location
Repurposing Buildings
Many Considerations

- Why is it available?
- Condition and needed repairs
- Degree of concrete removal and replacement
- Time to remove unneeded equipment
- Electrical Service
- Water
- Structural compromises
Structural Considerations
Ventilation Considerations

- Mechanical versus Natural
 - Is natural ventilation possible?
- Ease of “making it work”
- Poor ventilation can do irreparable damage to calves
Commonly Repurposed in Iowa
Ventilation Considerations
Many Convenience Considerations

- Convenience
 - Feeding
 - Cleaning
 - Bedding
 - Loading/unloading cattle

midlifebyfarmlight.blogspot.com
Hoop Buildings $8-9.00 /ft2
Curtain Sided Building: $10-12.00 /ft²
Mechanically Ventilated Facility with ceiling $12-14.00 /ft^2
Other Useful Costs

- Labor to build: $2-4.00 /ft^2
- Concrete: $200.00 labor and materials
- Cost per calf space: $1200-1500 is common
Summary

- Many different types of calf facilities.
 - Two most important factors
 - Dry bedding area
 - Proper ventilation where the calf is, not the human!
 - When repurposing buildings, make sure calf conditions aren’t compromised
For Calf Facility Information

Dan Huysen dehuysen@iastate.edu

Jennifer Bentley jbentley@iastate.edu

Larry Tranel tranel@iastate.edu

Kevin Lager klager@iastate.edu

The End! Questions?