Disaster Recovery

Livestock

Feed inventory aid to management

A simple feed inventory can be a valuable management tool when planning your livestock feeding program for the upcoming year. By completing a feed inventory, you can

1. determine your available feed supply,
2. estimate your total feed needs for your planned herd size, and
3. adjust livestock numbers or plan feed purchases when prices are favorable.

Use the worksheet (Figure 1) to estimate your feed needs and supplies. Use part I to convert various size and species of livestock to standard animal units (cow equivalents). The amount of feed needed is calculated in Part II. Use Table 1 (Growing Beef), Table 2 (Beef Cow), Tables 3 and 4 (Dairy), or Table 5 (Sheep) to estimate the amount of forage, corn or protein supplement needed for your livestock. Note that the estimated feed needed for dairy cows is for one year. Consequently you will need to reduce the amount when estimating

Table 1. Feed requirements for growing beef cattle $550-800 \mathrm{lb}$. using forages.

Forage Used				
Barren	5-20 bu.	40-60 bu. corn	Oat ${ }^{1}$ corn corn	Mature hay
silagelfa				
silage	silage		grass hay	

To produce daily gains of 1.5 to	$1.7,147$ to 167 days on feed				
Tons of forage	2.11	2.81	3.40	1.16	0.79
Bushels of corn	18.50	9.60	0.00	8.10	21.70
Lb. of supplement	115.00	120.00	115.00	155.00	120.00
To produce daily gains of 2.3 to	$2.5,100$ to	110 days on feed			
Tons of forage	0.70	0.74	1.58	0.38	0.28
Bushels of corn	22.40	20.20	1.90	18.30	23.60
Lb. of supplement	80.00	85.00	105.00	125.00	80.00

${ }^{1}$ Assumes no feeding waste, add 15 to 25% to forage needs if fed free choice
Table 2. Estimated forage and concentrate requirements for a producing beef cow.

Cow weight	Corn silage 60\% moisture	Alfalfabrome hay medium quality	Oat hay Dough stage	Poor quality Hay
	10\% waste	10\% waste	20\% waste	20\% waste
	tons/cow			
1,000	5.0	2.1	2.5	2.2
1,200	5.7	2.5	2.9	2.5
1,400	6.4	2.8	3.2	2.8
Corresponding supplement needs ${ }^{1} \quad$ lb/cow				
Corn	0	275	100	775
Soybean meal	50	0	60	25

Iowa State University

University Extension

your total needs from now until next year's hay or forage crop is harvested.

Use Part III to estimate the amount of feed available. Capacity charts for various silo types and crops are available from county extension offices. Once you have determined your feed needs and supply, the final step (Part IV) is to determine if you will have too much feed or too little. If you will be short of feed, you can decide whether to modify your normal feeding program, reduce livestock numbers or purchase additional feeds.

Prepared by Lee Kilmer, extension dairy specialist, Dan Loy and Daryl Strohbehn, extension beef specialists, and Dan Morrical, extension sheep specialist, lowa State University
. . . and justice for all
The lowa Cooperative Extension Service's programs and policies are consistent with pertinent federal and state laws and regulations on nondiscrimination regarding race, color, national origin, religion, sex, age, and disability.

Cooperative Extension Service, lowa State University of Science and Technology and the United States Department of Agriculture coop-erating. Robert M. Anderson, Jr., director, Ames, lowa. Distributed in furtherance of the Acts of Congress of May 8 and June 30, 1914.

Table 3. Yearly forage requirement of a lactating cow.

Annual Forage Requirements ${ }^{\text {a }}$

Tons as fed/cow ${ }^{\text {b }}$

Avg Milk	Corn Silage Hay	$\mathbf{1 0 0} \%$ $\mathbf{0} \%$	$\mathbf{7 5 \%}$ $\mathbf{2 5 \%}$	$\mathbf{5 0 \%}$ $\mathbf{5 0} \%$	$\mathbf{2 5 \%}$ $\mathbf{7 5 \%}$	$\mathbf{0} \%$ $\mathbf{1 0 0} \%$
15,000	Corn Silage $^{\text {c }}$	11.7	8.8	5.8	2.9	0.0
	Hay	0.0	1.2	2.4	3.6	4.8
18,000	Corn Silage	12.9	9.6	6.4	3.2	0.0
	Hay	0.0	1.3	2.6	3.9	5.2
21,000	Corn Silage	14.0	10.5	7.0	3.5	0.0
	Hay	0.0	1.4	2.9	4.3	5.7
24,000	Corn Silage	15.2	11.4	7.6	3.8	0.0
	Hay	0.0	1.5	3.1	4.6	6.2

abased on a 1,300lb. BW cow, reduce amounts $10-20 \%$ for smaller cows
bAmounts of 35\% DM/corn silage and 88% DM hay; includes dry period and 15% storage and feeding loss
${ }^{\text {c Multiply }}$ by 2 if hay-crop silages used
Table 4. Yearly concentrate requirement of a lactating dairy cow.

Corn and Protein Supplement Needed ${ }^{\text {a }}$ tons as fed/cow/year ${ }^{\text {b }}$

Avg	Corn Silage	$\mathbf{1 0 0 \%}$	$\mathbf{7 5 \%}$	$\mathbf{5 0 \%}$	$\mathbf{2 5 \%}$	$\mathbf{0 \%}$
Milk	Hay	$\mathbf{0 \%}$	$\mathbf{2 5 \%}$	$\mathbf{5 0 \%}$	$\mathbf{7 5 \%}$	$\mathbf{1 0 0 \%}$
15,000	Corn	1.08	1.53	1.98	2.44	2.89
	Prot Suppl.	1.08	0.78	0.49	0.19	0.00
18,000	Corn	1.14	1.64	2.14	2.64	3.13
	Prot Suppl.	1.30	0.97	0.65	0.32	0.00
21,000	Corn	1.20	1.75	2.29	2.83	3.38
	Prot Suppl.	1.52	1.16	0.81	0.45	0.09
24,000	Corn	1.27	1.85	2.44	3.03	3.62
	Prot Suppl.	1.74	1.35	0.97	0.58	0.19

abased on a 1,300 lb. BW cow, reduce amounts 10-20\% for smaller cows
bIncludes dry period and 5% storage and feeding loss
Table 5. Estimated roughage and concentrate requirements for mature ewes.

Ewe weight	Corn silage (5-20 bu) (60\% moisture 10\% waste)	Alfalfa brome hay medium quality (big bales-20\% waste)	Oat hay dough (25\% waste) poor quality	$\begin{gathered} \hline \text { Mature } \\ \text { grass } \\ \text { big bales } \\ \text { (30\% waste) } \end{gathered}$
tons/ewe				
150	1.0	. 43	. 45	. 54
175	1.1	. 48	. 5	. 6
200	1.2	. 53	. 55	. 66

Corresponding supplement needs

150 Corn	92	135	63	124
SBM	102	16	104	112
175 Corn	102	150	70	138
SBM	113	18	116	124
200 Corn	112	165	76	152
SBM	124	20	128	136

[^0]
Feed Inventory Worksheet

I. Animal Inventory

A. Dairy

1. Number of adult cattle
2. Number of yearlings
\qquad $x 1.00=$ \qquad
3. Number of calves (<12mo) \qquad
$\times 0.50=$ \qquad
4. Total dairy animals \qquad
$\times 0.25=$ \qquad
B. Beef

Number of feeder cattle:
Number of cows:
C. Sheep

Number of ewes:
\qquad
\qquad
\qquad
II. Feed Needs

IV. Summary:

Available
Silage Forage Corn Protein Supplement
(-)
Needed

Shortage(-)
or Excess(+)

[^0]: Assumes Oct. 1 to May 1 feeding period.

