Automatic Milking Systems-Producer Survey

United States Department of Agriculture

National Institute of Food and Agriculture

ISU Extension & Outreach Dairy Field Specialists
Jennifer Bentley

Leo Timms

Larry Tranel

ISU Extension & Outreach Farm and Agribusiness Specialist Kristen Schulte

IOWA STATE UNIVERSITY

Extension and Outreach

Healthy People. Environments. Economies.

Producer Survey Response

- 8 producers responded
- Avg. installation age: 8 months
- Herd Size Avg: 12% increase
 - Before: 149 cows
 - After: 167 cows
- Average cost per AMS: \$185,000 without building costs

Labor Efficiency

- Primary goal when installing an AMS
 - Labor savings valued at \$44,030/year
 - Hiring, training, and overseeing employees decreased (37 minutes/day)
 - Records Management labor increased minimally at \$212 per year (37.8 minutes/day)
 - Information and records collected from AMS

75% Decrease in Total Milking Labor

Milking Labor

Hours of Milking Labor

IOWA STATE UNIVERSITY Extension and Outreach

Healthy People. Environments. Economies.

Milking Labor Management

- Milking Frequency:
 - Before: 2 times/day
 - After: 2.9 times/day
- Fetching cows 2.25 times per day
 - Average 10 cows fetched per robot per day

70% Decrease in Heat **Detection**

Heat Detection

Hours of Heat Detection

IOWA STATE UNIVERSITY

Extension and Outreach

Healthy People. Environments. Economies.

Labor Efficiency

- Cows milked per labor hour
 - Increased from 21.3 to 185.2 cows
 - 781% decrease in milking labor!
- Labor cost per hundredweight
 - Reduced from \$1.93 to \$0.35/cwt.
- Labor cost per cow
 - Reduced from \$1.34 to \$0.27 per cow
- For one robot using a 74 cow per robot basis, producers saw milking labor savings of \$23,997 per year

Management Practices of Dairy Producers

Cow Housing

■ Built new facilities ■ Retrofitted existing free stall barn

■ Converted stanchion barn to AMS = 100% housed in free stalls

IOWA STATE UNIVERSITY Extension and Outreach

Management Practices of Dairy Producers

Bedding Type

IOWA STATE UNIVERSITY Extension and Outreach Healthy People. Environments. Economies.

Management Practices of Dairy Producers

Barn Cleaning

IOWA STATE UNIVERSITY Extension and Outreach

Healthy People. Environments. Economies.

Milk Production and Quality

Milk Production, lbs/day

Somatic Cell Count

IOWA STATE UNIVERSITY Extension and Outreach

Healthy People. Environments. Economies.

75% of the producers were extremely satisfied to moderately satisfied with using conductivity to manage milk quality

Feed Management

- Managing the feeding system is critical to the AMS success
- Properly balancing the Partial Mixed Ration (PMR) and pellet drives the success of visits to the AMS.
- Provide fresh, timely, high quality forage in the bunk contributes to AMS success

Feeding Management

- Partial Mixed Ration
 - Avg. 0.73 lbs of PMR fed per pound of milk
 - Costs reported ranged from \$0.08 to 0.12 per pound of PMR*Cost per pound of PMR is of low confidence in the data set due to low response rate
 - 62.5% of producers are feeding the PMR ration 2 times per day
 - Pushing up feed varied from no push-up to 5-6 times per day to continuous with robotic pusher.

Feeding Management

- Pellet Management
 - Minimum pounds of pellet fed through robot: 5 lbs
 - 37.5% farms decreasing to 2 pounds of pellet per day 14 days prior to dry-off
 - Maximum pounds of pellet fed through robot: 14.5 lbs
 - Early lactation and/or high production
 - Avg. cost per pound of pellet feed: \$0.13 per pound
- Pellet Palatability
 - Typical ingredients include corn and a variety of byproducts such as linseed, wheat midds, molasses, soybeans, oats, and DDGs.
 - Major driver of AMS success

Reproductive Management

- 87.5% of cows are bred in a natural heat through activity monitoring system
 - Some farms still observe for heat 1-2 times/day in addition to activity monitoring
- Half the farms utilize a synchronization program
 - ranging from 1% for problem cows up to 25% of all cows in the herd.
- 62.5% report using less synchronization programs than in previous system.
- Services per conception decreased
 - 19% to 2.1 services per conception.
- Pregnancy rate increased by 6%.

Other Issues of Concern

- Minimal change in cull rate
- Reasons for culling did not change after AMS
- Decrease in electrical use
- Increase in water and chemical usage; possibly attributed to herd growth

Satisfaction Index

- 100% of producers agree or strongly agree that:
 - The AMS has been a good personal, financial and management investment.
 - The AMS has improved cash flow.
 - The AMS has improved profitability.
 - The AMS has improved quality of life
 - By an average value of \$22,500

Reasons for Installing an Automatic Milking System

1. Flexibility in Schedule (n=8)

 Have more time for family events, improved quality of life

2. Labor Efficiency (n=5)

 Ability to work in other areas of the farm, labor consistency and availability, and milking frequency

3. Information (n=4)

Technology, individualized cow data and mgt.

4. Comparison of another system (n=3)

Going to build anyway, similar cost to other systems

Investment Analysis

- High initial investment cost due to the automation of the milking system
- Annual investment cost assuming
 - 15 year useful life:
 - \$336.04 per cow or \$1.42 per hundredweight
 - 10 year useful life:
 - \$402.70 per cow or \$1.70 per hundredweight
 - Total annual investment and labor cost:
 - \$1.77/cwt. (15 yrs) -- \$2.06/cwt. (10 yrs.)

Investment Analysis

- Payback period
 - Based on labor savings and increased milk production
 - 15 year useful life = 6.1 years
 - 10 year useful life = 7.2 years
 - Based on labor savings, increased milk production, and other revenue (reproduction savings potential)
 - 15 year useful life = 5.3 years
 - 10 year useful life = 6.1 years

Summary

- AMS provided a positive quality of life and milking labor advantage over previous system.
 - Average of 12% more cows able to be milked with an average of 75% less labor
 - Production increased 12% while SCC dropped 36%
 - Feeding and housing efficiencies gained

Bottom Line of AMS: Cows and People like Them!