Estimating Grain Transportation Costs

Marketing grain involves making decisions about when to sell, how to sell, and where to sell. With the increased availability of ethanol plants, feed mills, barge loading facilities, and grain processors, farmers have many choices for a selling location. Choosing among the options requires an accurate estimate of the cost of transporting the grain to each location.

Tractors and wagons have traditionally been used to move grain to nearby locations. Trucks are more often used for longer hauls. In recent years, semi-trailer trucks have become the most common means of transporting grain.

Grain transportation costs can be divided into two categories: ownership costs, which occur regardless of how much the truck or tractor is used, and operating costs, which vary directly with the number of miles driven.

Ownership Costs

Also called fixed costs, include depreciation, interest, insurance, and licenses.

Depreciation

Depreciation is a cost resulting from wear, obsolescence, and age. Age and accumulated miles of use are the most important factors in determining how fast a truck depreciates. Many farm trucks are purchased after having been used for over the road hauling, so they may have a high number of miles on the odometer.

Before an estimate of annual depreciation can be calculated, the initial purchase price, the number of years the truck will be owned, and a salvage value must be estimated. Salvage value is an estimate of the sale value of the machine at the end of its ownership period. It is the amount you can expect to receive as a trade-in allowance or an
estimate of the used market value if you expect to sell it outright. Used vehicle websites or classified ads are good sources of information about used truck values.

For example, assume the purchase cost (used) of a semi-truck tractor was $\$ 45,000$, and the estimated salvage value after 10 years is $\$ 20,000$:

$$
\begin{aligned}
\begin{aligned}
\text { Total } \\
\text { depreciation }
\end{aligned} & =\text { purchase price }- \text { salvage value } \\
& =\$ 45,000-\$ 20,000 \\
& =\$ 25,000
\end{aligned}
$$

Interest

If you borrow money to buy a truck, the lender will determine the interest rate to charge. But if you use your own capital, the rate to charge will depend on the opportunity cost for that capital elsewhere in your farm business. If only part of the money is borrowed, an average of the two rates should be used. For the example we will assume an average interest rate of five percent.

The joint costs of depreciation and interest can be calculated by using a capital recovery factor. Capital recovery is the number of dollars that would have to be set aside each year to just repay the value lost due to depreciation and to pay the interest cost.

Table 1 shows capital recovery factors for various combinations of interest rates and ownership periods. For the example, the capital recovery factor for 10 years and five percent is . 130 . The annual capital recovery cost is found by multiplying the capital recovery factor by the total depreciation over the ownership life, then adding the product of the interest rate and the salvage value to it.

For the example values given:

$$
\begin{aligned}
\begin{array}{l}
\text { Capital } \\
\text { recovery }
\end{array} & =\begin{array}{l}
\text { (capital recovery factor } \\
\\
\\
\\
\\
\\
\\
\\
\text { (solal depage value } \times \text { interest rate })
\end{array} \\
& =(.130 \times \$ 25,000)+(\$ 20,000 \times .05) \\
& =\$ 3,250+\$ 1,000 \\
& =\$ 4,250 \text { per year }
\end{aligned}
$$

For a semi-trailer truck the cost for the trailer can be estimated separately or combined with the truck. In the example, the trailer is assumed to have a purchase price of $\$ 25,000$, an ownership life of 20 years, and a salvage value of $\$ 5,000$. The capital recovery factor for five percent and 20 years is 0.08 , so the annual capital recovery cost is:

$$
\begin{aligned}
\text { Capital } & =.08 \times(\$ 25,000-5,000) \\
\text { recovery } & +(\$ 5,000 \times .05) \\
& =\$ 1,600+\$ 250 \\
& =\$ 1,850
\end{aligned}
$$

Insurance and License

Costs for insuring and licensing a grain truck are usually much smaller than depreciation and interest, but they need to be considered, nevertheless. Insurance and license fees can be verified by farm records. In our example, they are estimated to be $\$ 350$ and $\$ 500$ per year, respectively, but they can vary widely.

Total Ownership Cost

The estimated costs of depreciation, interest, insurance, and license are added together to find the total ownership cost. For our example truck, this adds up to $\$ 6,950$ per year.

$$
\begin{array}{ll}
\text { Capital recovery, truck } & =\$ 4,250 \\
\text { Capital recovery, trailer } & =\$ 1,850 \\
\text { Insurance } & =\$ 350 \\
\text { License } & =\$ 500 \\
\text { Total ownership cost } & =\$ 6,950 \text { per year }
\end{array}
$$

Operating Costs

Also called variable costs, include repairs, replacement of tires, fuel, lubrication, and operator labor.

Repairs and Maintenance

Repair costs occur because of routine maintenance, wear and tear, and accidents. The best data for estimating repair costs are the owner's own records of past repair expenses. Ag Decision Maker File A3-16, Grain Harvesting Equipment and Labor in Iowa (www.extension.iastate.edu/agdm/crops/ $\underline{\mathrm{html} / \mathrm{a} 3-16 . \mathrm{html}) \text {, shows reported repair and }}$ maintenance costs for grain trucks from a recent Iowa survey. In our example, the owner estimates annual repair costs to be about $\$ 3,000$ for the truck and $\$ 500$ for the trailer.

Tires

Replacement of tires is a significant maintenance cost. The average number of tires purchased each year depends on the life of each tire, the number of miles driven, and the number of tires on each truck or trailer.

In our example, the semi-truck tractor has 10 tires with an expected life of 40,000 miles and a replacement cost of $\$ 400$ each. If the truck is driven 8,000 miles per year, an average of two tires must be replaced each year, at a total cost of $\$ 800$.

$$
\begin{aligned}
\text { Tires replaced }= & (8,000 \text { miles } / 40,000 \text { miles } \\
& \text { per tire }) \times 10 \text { tires }=2 \text { tires } \\
\text { Cost of tires } & =2 \text { tires } \times \$ 400 \text { per tire } \\
& =\$ 800 \text { per year }
\end{aligned}
$$

Similarly, if the trailer has eight tires with an average life of 50,000 miles and a replacement cost of $\$ 250$, the annual costs for trailer tires is:

$$
\begin{aligned}
\text { Tires replaced }= & (8,000 \text { miles } / 50,000 \text { miles } \\
& \text { per tire }) \times 8 \text { tires }=1.6 \text { tires } \\
\text { Cost of tires } & =1.6 \text { tires } \times \$ 250 \text { per tire } \\
& =\$ 320 \text { per year }
\end{aligned}
$$

Fuel

Fuel costs can be estimated by dividing the total miles the truck is driven each year by the average fuel efficiency (in miles per gallon) to find the total gallons of fuel used, then multiplying by the average cost of fuel per gallon.

In the example, the truck is driven 8,000 miles per year and the average miles per gallon achieved is assumed to be 5.0 , so 1,600 gallons of fuel are used annually. If the price of fuel is $\$ 2.65$ per gallon, the annual expenditure is:

$$
\begin{aligned}
\text { Fuel use } & =8,000 \text { miles } / 5 \text { miles per gallon } \\
& =1,600 \text { gallons } \\
\text { Fuel cost } & =1,600 \text { gallons } \times \$ 2.65 \text { per gallon } \\
& =\$ 4,240 \text { per year }
\end{aligned}
$$

Another 10 percent is added to the fuel cost for the cost of lubricants.

Lubricants cost $=\$ 4,240 \times .10=\$ 424$

Labor

The cost of labor can be the wages paid to the driver of the truck or the value of the operator's own labor. Hours of road time can be estimated by dividing the total miles the truck is driven each year by the average speed at which it is driven. Additional hours spent loading and unloading (including hours waiting in line) can be added. The total hours are multiplied by the assumed wage rate to estimate the total labor cost.

For our example, the truck is driven 8,000 miles per year at an average speed of 50 miles per hour.

Road time	$=8,000$ miles $/ 50$ miles $/$ hour
	$=160$ hours
Loads hauled	$=50,000$ bushels hauled $/$
	1,000 bus per load
	$=50$ loads per year
Loading time	$=50$ loads $\times .5$ hour/load
	$=25$ hours
Unloading time	$=50$ loads $\times 1.0$ hour /load
	$=50$ hours
Total labor time	$=160+25+50=235$ hours
Total labor cost	$=235$ hours $\times \$ 15 /$ hour
	$=\$ 3,525$

Total Operating Cost

Repairs, fuel, lubricants and labor costs are added to calculate total operating cost. For the truck example, the total operating cost is:

$$
\begin{aligned}
\text { Total operating cost }= & \$ 3,000+\$ 500+\$ 800 \\
& +\$ 320+\$ 4,240+\$ 424 \\
& +\$ 3,525 \\
= & \$ 12,809
\end{aligned}
$$

Total Cost

After all costs have been estimated, the total ownership cost per year can be added to the operating cost to calculate the total cost to own and operate the truck. Total cost for our example is:

$$
\begin{array}{ll}
\text { Total ownership cost } & =\$ 6,950 \\
\text { Total operating cost } & \equiv \$ 12,809 \\
\text { Total cost } & =\$ 19,759
\end{array}
$$

Cost per Bushel or per Mile

Sometimes it is useful to calculate the total cost per mile driven or bushel hauled. In the example it was assumed that the truck was driven 8,000 miles per year, so the average total cost per mile would be:

$$
\begin{aligned}
\text { Cost per mile } & =\$ 19,759 / 8,000 \text { miles } \\
& =\$ 2.47 \text { per mile }
\end{aligned}
$$

Remember, for hauling one load the round-trip miles should be used to calculate the total cost of the trip.

If 50,000 bushels of grain are hauled each year, the average cost per bushel hauled would be:

$$
\begin{aligned}
\text { Cost per bushel } & =\$ 19,759 / 50,000 \text { bushels } \\
& =\$.395 \text { per bushel }
\end{aligned}
$$

When comparing the cost of hauling to alternative sites, only the operating costs need to be taken into account. The ownership costs will not change if more or fewer miles are driven. In the example, the operating cost per mile would be:

$$
\begin{array}{ll}
\text { Operating cost } & =\$ 12,809 / 8,000 \text { miles } \\
\text { per mile } & =\$ 1.60 \text { per mile }
\end{array}
$$

If one potential grain selling location is 10 miles from the farm and another buyer is 75 miles away, the total operating costs for hauling to each one would be:

First
location $=\$ 1.60 / \mathrm{mile} \times 10$ miles $\times 2=\$ 32$
$\begin{aligned} & \text { Second } \\ & \text { location }\end{aligned}=\$ 1.60 / \mathrm{mile} \times 75$ miles $\times 2=\$ 240$
The difference is equal to $\$ 208$ per trip. If 1,000 bushels are hauled each trip, the price at the second location would have to be ($\$ 208$ / 1,000 miles) $=\$.208$ per bushel higher to make up for the greater hauling cost.

The worksheet at the end of this publication can be used to calculate the cost of transporting grain for your own situation. Ag Decision Maker Decision Tool A3-29, Grain Truck or Wagon Transportation Calculator, (www. extension.iastate.edu/agdm/crops/xls/a329 graintransportation.xlsx) contains an electronic spreadsheet for estimating grain transportation costs using either a truck or a tractor and wagon combination. Ag Decision Maker Decision Tool A2-32-A3-41, Grain Bid Comparison Tool, (www.extension.iastate.edu/agdm/crops/ xls/a2-32-a3-4l grainbidpricecomparison.xlsx) allows you to easily compare grain bids at different locations, taking into account hauling costs as well as moisture discounts and drying charges.

Table 1. Capital recovery factors

Interest rate	2\%	3\%	4\%	5\%	6\%	7\%	8\%	9\%	10\%
Years									
1	1.020	1.030	1.040	1.050	1.060	1.070	1.080	1.090	1.100
2	0.515	0.523	0.530	0.538	0.545	0.553	0.561	0.568	0.576
3	0.347	0.354	0.360	0.367	0.374	0.381	0.388	0.395	0.402
4	0.263	0.269	0.275	0.282	0.289	0.295	0.302	0.309	0.315
5	0.212	0.218	0.225	0.231	0.237	0.244	0.250	0.257	0.264
6	0.179	0.185	0.191	0.197	0.203	0.210	0.216	0.223	0.230
7	0.155	0.161	0.167	0.173	0.179	0.186	0.192	0.199	0.205
8	0.137	0.142	0.149	0.155	0.161	0.167	0.174	0.181	0.187
9	0.123	0.128	0.134	0.141	0.147	0.153	0.160	0.167	0.174
10	0.111	0.117	0.123	0.130	0.136	0.142	0.149	0.156	0.163
11	0.102	0.108	0.114	0.120	0.127	0.133	0.140	0.147	0.154
12	0.095	0.100	0.107	0.113	0.119	0.126	0.133	0.140	0.147
13	0.088	0.094	0.100	0.106	0.113	0.120	0.127	0.134	0.141
14	0.083	0.089	0.095	0.101	0.108	0.114	0.121	0.128	0.136
15	0.078	0.084	0.090	0.096	0.103	0.110	0.117	0.124	0.131
16	0.074	0.080	0.086	0.092	0.099	0.106	0.113	0.120	0.128
17	0.070	0.076	0.082	0.089	0.095	0.102	0.110	0.117	0.125
18	0.067	0.073	0.079	0.086	0.092	0.099	0.107	0.114	0.122
19	0.064	0.070	0.076	0.083	0.090	0.097	0.104	0.112	0.120
20	0.061	0.067	0.074	0.080	0.087	0.094	0.102	0.110	0.117

Worksheet for estimating grain transportation costs

Input Data

a. Purchase price
b. Years truck will be owned
c. Expected salvage value at end of ownership
d. Annual cost of repairs and maintenance
e. Number of tires
f. Replacement cost per tire
g. Lifetime per tire
h. Miles truck driven per year
i. Average hauling speed
j. Average miles driven per round trip
k. Bushels hauled per year with this truck
I. Bushels hauled per load
m . Loading time per load
n. Unloading time per load
o. Driver labor rate
p. Interest rate on investment
q. Price of fuel
r. Fuel efficiency
s. Annual cost of truck license
t. Annual cost of truck insurance

Ownership Costs

Capital recovery: capital recovery factor
(from Table 1) [\qquad $\times(a-c)+(c \times p)]$
Insurance and license: [$\mathrm{s}+\mathrm{t}$]
Total ownership cost

Operating Costs

Repair and maintenance cost: [d]
Tires cost: [(h/g) $\times \mathrm{e} \times \mathrm{f}]$
Fuel and lubrication cost: [(h/r) $\times \mathrm{q} \times 1.1]$
Labor cost: $\{(\mathrm{h} / \mathrm{i})+[(\mathrm{m}+\mathrm{n}) \times(\mathrm{k} / \mathrm{I})]\} \times \mathrm{o}$
Total operating cost
Total Ownership plus Operating Costs

Semi Tractor

\$ \qquad
$\$$
\$ \qquad
\$
\$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\$
\square
\$
\qquad
\$
\qquad

Truck, \$/year
\qquad
\qquad
\qquad
\qquad

Trailer, \$/year
Combined
\qquad
\qquad
\qquad
\square
\qquad
\qquad
\qquad
\qquad
Units
$\$$ years
\qquad per year tires per tire miles/tire miles/year miles/hour miles/trip
bushels/year bushels/load hours hours
\$/hour
\$/gallon
miles/gallon
-
\qquad

Worksheet for estimating grain transportation costs - example

Input Data

a. Purchase price
b. Years truck will be owned
c. Expected salvage value at end of ownership
d. Annual cost of repairs and maintenance
e. Number of tires
f. Replacement cost per tire
g. Lifetime per tire
h. Miles truck driven per year
i. Average hauling speed
j. Average miles driven per round trip
k. Bushels hauled per year with this truck
I. Bushels hauled per load
m . Loading time per load
n. Unloading time per load
o. Driver labor rate
p. Interest rate on investment
q. Price of fuel
r. Fuel efficiency
s. Annual cost of truck license
t . Annual cost of truck insurance

Ownership Costs

Capital recovery: capital recovery factor (from Table 1) [\qquad $\times(a-c)+(c \times p)]$
Insurance and license: $\mathrm{s}+\mathrm{t}$
Total ownership cost

Operating Costs

Repair and maintenance cost: [d]
Tires cost: [(h/g) $\times \mathrm{e} \times \mathrm{f}]$
Fuel and lubrication cost: [(h/r) $\times \mathrm{q} \times 1.1$]
Labor cost: $\{(\mathrm{h} / \mathrm{i})+[(\mathrm{m}+\mathrm{n}) \times(\mathrm{k} / \mathrm{l})]\} \times \mathrm{o}$
Total operating cost
Total Ownership plus Operating Costs

Semi Tractor
$\$ 45,000$
10
$\$ 20,000$
$\$ 3,000$
10
$\$ 400$
40,000
8,000
50
60

50,000
1,000
0.50
1.00

$\$ 15.00$
5%
$\$ 2.65$
5.0

$\$ 350$
$\$ 500$

Truck, \$/year

\$4,250	\$1,850	\$6,100
850		850
\$5,100	\$1,850	\$6,950
\$3,000	\$500	\$3,500
800	320	1,120
4,664		4,664
3,525		3,525
\$11,989	\$820	\$12,809
\$17,089	\$2,670	\$19,759

[^0]
[^0]: . . . and justice for all
 Iowa State University Extension and Outreach does not discriminate on the basis of age, disability, ethnicity, gender identity, genetic information, marital status, national origin, pregnancy, race, religion, sex, sexual orientation, socioeconomic status, or status as a U.S. veteran. (Not all prohibited bases apply to all programs.) Inquiries regarding non-discrimination policies may be directed to Ross Wilburn, Diversity Officer, 2150 Beardshear Hall, 515 Morrill Road, Ames, Iowa 50011, 515-294-1482, wilburn@iastate.edu.

