Application of Immunohistochemistry and ELISA for the Diagnosis of Neospora-Infected Cattle

AS Leaflet R1358

Meghan A. Hessler, Merck veterinary medicine scholar
Patrick Halbur, assistant professor of pathology

Summary

Studies were undertaken to adapt diagnostic methods for use in our laboratory for detection of Neospora sp. infection in cattle. An immunohistochemical (IHC) test was used for detection of Neospora sp. antigen in tissues of aborted bovine fetuses. Neospora sp. antigen was detected most frequently in fetal brain tissue. Polyclonal antibodies were tested for specificity and sensitivity of the IHC. Sera were obtained from Neospora sp. infected dairy herds for use as positive and negative controls in the continuing development of an enzyme-linked immunosorbent assay (ELISA).

Introduction

Neosporosis is a recently described protozoal infection proposed to be a major cause of abortion in dairy cattle and to a lesser extent in beef cattle. The pathogenesis is not completely known, but vertical transmission has been indicated. The bulk of the data collected has been from Southwest and West Coast drylot dairy herds. Although neosporosis has been identified as a causative agent in Midwestern bovine abortions, tests for definitive diagnosis or for epidemiological studies have not been available in Iowa. Here we explore the adaptation and reliability of the IHC and ELISA for diagnosis of neosporosis at the ISU Veterinary Diagnostic Laboratory.

Materials and Methods

Immunohistochemistry

Archival fetal tissues were tested with streptavidin-biotin peroxidase (ABC) immunohistochemistry (IHC) using goat anti-Neospora caninum polyclonal antibody. Protocol used followed those described by Halbur et al with the following minor exceptions. Phosphate-buffered saline (PBS), pH 7.2, was used as wash and as diluent. Antibody was diluted at 1:3500 and was incubated on the tissues for two hours at room temperature. Eleven of the known Neospora sp. infected tissues also were tested with mouse anti-Neospora caninum monoclonal antibody (MAB 6G7, isotype IgG2a).

All tissues tested were fixed in formalin and embedded in paraffin.

ELISA

Sera from three known Neospora sp. infected Iowa dairy herds were collected. Sample size ranged from 45 to 60 milking cows. Cows with a history of a recent abortion were included with the random sampling of non-aborting cows. ELISAs were performed by California Veterinary Diagnostic Laboratory Systems (CVDLS) and interpreted as follows: optical density (OD) values: <.45, were considered negative by CVDLS; .45-.7, were 65% likely to be Neospora-infected; and, >.7, were 100% likely to be Neospora-infected.

N. caninum was successfully cultured in our laboratory for use as an antigen in our ELISA. Protocol followed that of Pare et al. In our laboratory, we inoculated Vero cell monolayers at 80-100% confluency with 3-5 drops of N. caninum, approximately 7x10^4 tachyzoites. Cell cultures were passed and harvested at 80% cell lysis. Antigen preparation and ELISA followed the protocol of CVDLS, using filtered, washed, and sonicated antigen. Our laboratory used N. caninum instead of the bovine isolate (BPA-1) since no notable differences have been detected in Western blot or in the CVDLS ELISA.

Results and Discussion

Immunohistochemistry

IHC sensitivity and specificity were determined through the use of 17 known Neospora sp. infected (positive controls) and 10 known infectious bovine rhinotracheitis (IBR) infected cases (negative controls). All positive controls were positive and all negative controls were negative by IHC. Results illustrated a high correlation of IHC positive and known Neospora-infected cases.

Twenty-seven Neospora sp. infected fetal tissues, 17 known positive cases, and 10 suspect cases diagnosed as “consistent with protozoal causes”, were used to study frequency of finding antigen in various tissue types. Availability of tissue type varied with each case. Results of IHC using goat anti-N. caninum polyclonal antibody are summarized in Table 1. The consistent detection of Neospora sp. antigen in fetal brains supports previous studies.

Table 1. Frequency of immunohistochemistry (IHC) detection of Neospora sp. antigen within aborted fetal tissues.

<table>
<thead>
<tr>
<th>Tissue</th>
<th># positive/n</th>
<th>Tissue</th>
<th># positive/n</th>
</tr>
</thead>
<tbody>
<tr>
<td>brain</td>
<td>21/26</td>
<td>spleen</td>
<td>2/7</td>
</tr>
<tr>
<td>kidney</td>
<td>3/9</td>
<td>muscle</td>
<td>0/3</td>
</tr>
<tr>
<td>heart</td>
<td>3/8</td>
<td>intestine</td>
<td>0/4</td>
</tr>
<tr>
<td>liver</td>
<td>4/7</td>
<td>placenta</td>
<td>0/6</td>
</tr>
<tr>
<td>lung</td>
<td>2/10</td>
<td>thymus</td>
<td>0/1</td>
</tr>
</tbody>
</table>

Seven of the 10 cases diagnosed “consistent with protozoal causes” tested positive by IHC, although not all had brain tissue available for testing.

In addition, 11 of 11 known Neospora-infected fetal brain tissues tested with mouse anti-N. caninum monoclonal antibody were also positive. Preliminary comparison of monoclonal and polyclonal antibodies indicate that more consistent results were obtained with the use of the monoclonal antibody.

ELISA

Serology results from three Neospora-infected Iowa dairy herds are summarized in Table 2. All cows that had aborted had sera antibody levels >.5 (considered positive). All cattle testing positive had aborted.

Sera from cows that were confirmed Neospora sp. positive or negative by CVDLS ELISA were used as controls and for
comparison in the continuing refinement of our ELISA serology test. Serology tests are useful in detection of Neospora sp. infected fetuses, fetal fluids, and cows.

A fourth Iowan herd that had a Neospora sp. diagnosed abortion also was tested. Random sampling of 30 of 175 milking Holsteins, the aborted cow not included, revealed three positive cows by CVDLS ELISA. This is a calculated 13% herd seroprevalence. The 95% confidence interval estimates the infection rate between 2-24%.

Table 2. Incidence of Neospora-sp. antibody seroconversion for three Iowa dairy herds. See text for value interpretation.

<table>
<thead>
<tr>
<th>O.D. Values</th>
<th>Herd #1</th>
<th>Herd #2</th>
<th>Herd #3</th>
</tr>
</thead>
<tbody>
<tr>
<td>>.7</td>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>.45-.7</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td><.45</td>
<td>9</td>
<td>11</td>
<td>13</td>
</tr>
</tbody>
</table>

Implications
Neosporosis has been identified as a significant cause of abortion in Iowa. Immunohistochemistry in fetal brain tissue is useful for the diagnosis of neosporosis in both dairy and beef cattle. More information is needed about transmission and incidence of Neospora sp. in cattle. Continued development of serology testing will provide further information on incidence and disease prevalence within Iowa herds. It will also aid in diagnosis when fetal brain tissue is not available.

Acknowledgments
We wish to thank Dr. David S. Lindsay (Auburn University) for kindly providing N. caninum isolate and monoclonal antibody 6G7; Dr. Sharon Hietala, (University of California-Davis) for providing protocol, ELISA serology testing and technical assistance; and David Cavanaugh (ISU Veterinary Diagnostic Laboratory) for technical assistance. This work was supported by the Merck Veterinary Scholar Program and ISU Veterinary Diagnostic Laboratory.

References

